Tunable Multiple Plasmon-Induced Transparencies Based on Asymmetrical Graphene Nanoribbon Structures

نویسندگان

  • Chunyu Lu
  • Jicheng Wang
  • Shubin Yan
  • Zheng-Da Hu
  • Gaige Zheng
  • Liu Yang
چکیده

We present plasmonic devices, consisting of periodic arrays of graphene nanoribbons (GNRs) and a graphene sheet waveguide, to achieve controllable plasmon-induced transparency (PIT) by numerical simulation. We analyze the bright and dark elements of the GNRs and graphene-sheet waveguide structure. Results show that applying the gate voltage can electrically tune the PIT spectrum. Adjusting the coupling distance and widths of GNRs directly results in a shift of transmission dips. In addition, increased angle of incidence causes the transmission to split into multiple PIT peaks. We also demonstrate that PIT devices based on graphene plasmonics may have promising applications as plasmonic sensors in nanophotonics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photocurrent in graphene harnessed by tunable intrinsic plasmons.

Graphene's optical properties in the infrared and terahertz can be tailored and enhanced by patterning graphene into periodic metamaterials with sub-wavelength feature sizes. Here we demonstrate polarization-sensitive and gate-tunable photodetection in graphene nanoribbon arrays. The long-lived hybrid plasmon-phonon modes utilized are coupled excitations of electron density oscillations and sub...

متن کامل

Dynamically Tunable Plasmon-Induced Transparency in On-chip Graphene-Based Asymmetrical Nanocavity-Coupled Waveguide System

A graphene-based on-chip plasmonic nanostructure composed of a plasmonic bus waveguide side-coupled with a U-shaped and a rectangular nanocavities has been proposed and modeled by using the finite element method in this paper. The dynamic tunability of the plasmon-induced transparency (PIT) windows has been investigated. The results reveal that the PIT effects can be tuned via modifying the che...

متن کامل

Dual-band, Dynamically Tunable Plasmonic Metamaterial Absorbers Based on Graphene for Terahertz Frequencies

In this paper, a compact plasmonic metamaterial absorber for terahertz frequencies is proposed and simulated. The absorber is based on metamaterial graphene structures, and benefits from dynamically controllable properties of graphene. Through patterning graphene layers, plasmonic resonances are tailored to provide a dual band as well as an improved bandwidth absorption. Unit cell of the design...

متن کامل

Plasmon coupling in extended structures: Graphene superlattice nanoribbon arrays

Daniel Rodrigo,1,* Tony Low,2 Damon B. Farmer,3 Hatice Altug,1 and Phaedon Avouris3,† 1Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland 2Department of Electrical & Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA 3IBM Research Division, T.J. Watson Research Center, Yorktown Heights, New York 10598, USA (Rece...

متن کامل

Tunable surface-plasmon-polariton-like modes based on graphene metamaterials in terahertz region

Plasmonic response in graphene-based metamaterials show great potential for terahertz (THz) wave manipulation. In this work, we study the tunable surface-plasmon-polariton-like modes based on graphene complementary split ring resonators (CSRRs) in THz region. Our study suggests that these modes can be generated by graphene plasmonic metamaterials due to the diffraction coupling of surface plasm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017